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Abstract. A recent global optimization algorithm using decomposition (GOP), due to Floudas and 
Visweswaran, when specialized to the case of polynomial functions is shown to be equivalent to an 
interval arithmetic global optimization algorithm which applies natural extension to the cord-slope 
form of Taylor's expansion. Several more efficient variants using other forms of interval arithmetic are 
explored. Extensions to rational functions are presented. Comparative computational experiences are 
reported. 
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R~sum~. On montre que l'algorithme r6cent d'optimisation globale bas6 sur la d6composition du 
Floudas et Visweswaran, lorsqu'on le sp6cialise au cas de fonctions polyn6miales, est 6quivalent h une 
m6thode d'optimisation globale bas6e sur l'arithm6tique d'intervalles, qui applique l'extension 
naturelle /l la forme de la pente de la corde du d6veloppement de Taylor. Plusieurs variantes plus 
efficaces utilisant d'autres formes de l'arithm6tique d'intervalles sont explor6es. On propose des 
extensions au cas des fonctions fractionnaires. On pr6sente des r6sultats de calcul comparatifs. 

Mots-cl6s. Optimisation globale, d6composition, arithm6tique d'intervalles. 

1. Introduction 

In Floudas and Visweswaran ([5], [6], [13]), a decomposition-based global optimi- 
zation algorithm (GOP) is proposed for solving constrained nonconvex NLP 
problems. After introducing new transformation variables if necessary, the 
original nonconvex problem is expressed as a bilinear (or biconvex) program. Its 
variables are thus partitioned into two sets. Fixing temporarily one or the other 
set of variables leads to define primal and relaxed dual subproblems. Solution of 
these problems provides upper and lower bounds on the global optimum. 
Recently, this algorithm was specialized to find efficiently the global minimum of 
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univariate polynomial functions over an interval (Visweswaran and Floudas [14]). 
In this paper, the correspondence between this specialized version of the GOP 
algorithm and interval arithmetic is explored. It is shown that the application of 
the GOP algorithm to polynomial functions is equivalent to a version of an 
interval arithmetic algorithm which uses natural extension of the cord-slope form 
(defined below) of Taylor's expansion for univariate polynomial functions. Other 
versions of the interval arithmetic algorithm corresponding to different ways to 
evaluate the bounds on the cord-slope are investigated. Some of them lead to 
more efficient algorithms than others. Use of the nested form gives the smallest 
computing time and of the centered form (or sometimes the nested form) the least 
number of iterations. Furthermore the interval arithmetic algorithm can be easily 
extended to find the global optima of univariate rational functions on an interval 
by applying the cord-slope form on the numerator and the denominator of the 
fraction. 

The paper is organized as follows: the GOP algorithm is presented in Section 2. 
Some background on interval arithmetic and its application to computing the 
ranges of polynomial functions is provided in Section 3. The corresponding 
interval arithmetic algorithm is presented in Section 4. An extension designed to 
find the global minimum of rational functions is given in Section 5. Computational 
results are reported in Section 6. 

2. The GOP Algorithm for Polynomial Functions 

2.1. F O R M U L A T I O N  OF THE PRIMAL AND RELAXED D U A L  PROBLEMS 

Consider the problem 

min F ( y )  = a o + a a Y  + a z y 2  + �9 �9 �9 + anY n 

subject to yL<~y<~yV (1) 

where a0, a l , . . . ,  a n are given real numbers. Introducing new variables x i = yi, 
i = 0, 1, 2 , . . .  , n, Problem (1) can be reformulated as 

min f(x, y) = 2 aixi 
i=0 

subject to x 0 = 1 ,  

x i - x i _ l y = O ,  i = 1 , 2 , . . . , n ,  

and yE[yC, yV]. (2) 

For any fixed f i e  [yL, yV], the primal problem is defined as the following 
Problem P-: Y 

min f(x, ~) = ~ aix i 
x i=0 
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subject to x 0 = 1 ,  

x i - x i _ 1 3 7 = O ,  i = 1 , 2 , . . . , n .  (3) 

Since all variables x i are uniquely determined once )7 is fixed, Problem P;  reduces 
to a function evaluation; its solution is an upper bound of the global minimum of 
Problem (2). 

Define the function v (y )  for y C [yL, yU] to be 

v (y )  =min f (x ,  y) 
x 

subject to x 0 = 1  

x i - x  x l y = 0 ,  i = l , 2 , . . . , n  (4) 

then Problem (2) is equivalent to 

min v(y )  (5) 

subject to y E [ y L ,  yV]. (6) 

The minimization Problem in (4) is simply the primal Problem (Py). For any 
y E [yL, yV], the strong duality theorem permits v (y )  to be written as 

T 
sup inf f (x ,  y) + tx (x i - x i _ l y )  (7) 

where/x  = (/Xl,/x 2 . . . .  , /z n) is a vector of Lagrange multipliers. This leads to the 
following formulation, equivalent to (2): 

min v (y )  

subject to v(y )  >~minL(x, y,  p~) , 

y E [yL ,  yV]  (8) 

where L(x ,  y,  t z ) = f ( x ,  y ) +  t z r ( x i - x i _ l y  ) is the Lagrange function. 
Moreover, for any fixed y = 37, the Karush-Kuhn-Tucker  conditions for the 

primal Problem (P`2) can be written as 

y - 
VxiLf(x,  y,  t x;) = ai + Ix{ - tXi+lY = O, Vi = 1, 2 . . . . .  n ,  (9) 

with /x~ = s /xn+ I = 0. Therefore the Lagrange multipliers can be found by back- 
wards substitution: 

tx y = --an 

t zyn-1 = tz~37 -- a n 1 = - - a j  -- an_ 1 

"2 tx`2 - -e /Zn-e= ~ - l y - - a n - z = - - a ~ Y  - - a n _ l )  7 - a n _  e 
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Thus, in general 

/z~ = - ~ a f t  j-~ , 
j=i 

and 

i =  1 , 2 , . . . , n  

ny(x, y, IX ~) = ~ aix i + ~, IxYi(xi- xi_ay ) . 
i=0 i= l  

Separating the terms in x, (11) can be rewritten as 

L (x, y ,  = + - . i + l y ) x i  
i=0 

and using (9) again 

Ly(x, y, tx y) = a o - tL{37 + ~ Y - txi+l(y - y ) x  i �9 
i=1 

Therefore the following problem is a relaxation of Problem (8): 

min v(y) 

subject to v(y) >! m inLy(x, y , / i f )  

37 E [yL, yV] 
y E [yL, yV] . 

(10) 

(11) 

(12) 

(13) 

(14) 

Restricting 37 to be yL or yV, this problem can be further relaxed to 

min v(y) 

subject to v(y) >! min Lyz(X, y, tz yL) 

v(y) >i min Lyu(X, y, p.yU) 

y E [yL, yV] (15) 

Problem (15) is called the relaxed dual problem on the interval [yt,  yU] and 
denoted by Problem RDP[yLyV I. 

Since y E [yL, yV] and x i = y ,  we have the following bounds for xi: 

(yL)i<~xi <~ (yV)i, if i is odd; 

min{(yt),, (yV)/} ~<xi ~< max{(yL)i, (yUy} , if i is even and ON [yt, yV]; 

O<~X i<~max{(yL) i,(yU)i}, i f i i s e v e n  and0E[yL,  yU]. 
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yL ~> 0 and the lower bound otherwise. Let  x B~ be the upper bound of x i if Ixi+l 
Because yL _ Y ~< 0, we have 

min LyL(X, y ,  IxyL) = Ll(y  ) = ao _ Ixyry L + ~ _yL , L B t~i+lty -- y)x i �9 
x i = 1  

(16) 

Similar results hold for the current Lagrange f u n c t i o n  Lyv(X, y, Ix), i.e., 

-- ~ yU minLy~(X,y, IxYV)=L2(y)=ao Ix~VyV + txi+l(yV-y)x f '  , (17) 
x i = 1  

yU 
where x B' is the lower bound of xi if/x~+ 1 ~> 0 and the upper bound otherwise. 
Therefore Problem RDP[yL.yV 1 is equivalent to 

rain 

subject to 

v(y) 

v(y) >1 L~(y) 

v(y) >1 L2(y ) 
yL <~y <~yV. (18) 

Because both L l ( y  ) and L2(y ) are linear functions in y, this problem can be easily 
solved by finding the intersection point of these two functions. Since this problem 
is a relaxation of the dual Problem (5), its solution is a lower bound of the global 
minimum on the interval [yL, yV]. 

2.2. THE FRAMEWORK OF THE GOP ALGORITHM 

The GOP algorithm for univariate polynomial functions starts from an initial 
interval [yC, yV] and an initial interior point y l E  (yL, yV). As the algorithm 
proceeds, the interval is dynamically bipartitioned into smaller subintervals. At  
each iteration, one primal and two relaxed dual problems are solved, providing 
more and more precise lower and upper bounds on the global minimum. The 
algorithm terminates when the gap between the lower and upper bounds is 
smaller than a given tolerance. It can be stated formally as follows 

Step 1. Evaluate F(y L) and F(yV). Initialize the set of evaluation points to 
p y  = {yL, yV}. Choose an initial point yl.  Set v(y ~) = - ~  and store it in the set 
VY. Set the iteration counter k = 1, set the upper bound on the global minimum 
to P V =  min{F(yL),  F(yV)}, and the lower bound to p L =  - ~ .  

Step 2. Delete v(yk) from VY. Evaluate F(y ~) and update pV = min{PV, F(yk)}. 
Let  yLEFT = max{y[y E PY, y < yk), yR~G~rr = min{y]y ~ PY, y > yk}. Solve the 

relaxed dual problem RDPIyLEFry~], let its solution be (y*, v(y*)). If v(y*)< 
PV - �9 where �9 is the given tolerance, store this solution, i.e., put y* in the set 
PY and store the value v(y*) in VY; otherwise discard the s u b i n t e r v a l  [yLEFT, yk]. 
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Then solve the relaxed dual Problem RDP[/,yR1anr I and store its solution if the 
optimal value is less than p U _  e. Update the iteration counter, i.e. k ~--k + 1. 

Step 3. Choose yk E P Y -  {yL, yV} SO that v(y  ~) = min{v(y) ly  E Y -  {yL, yU}}. 
Update  pL = v(yk) .  If pV _ pL < e, stop. Otherwise, return to Step 2. 

3. Interval Arithmetic 

3.1. INTRODUCTION 

Interval Arithmetic was introduced by Moore [10] as a basic tool for control of 
numerical errors in machine computations. Instead of approximating a real value 
x by a machine representable number a pair of machine representable numbers is 
used, representing an interval in which x lies. Arithmetic operations for intervals 
are defined as follows 

[a, b] + [c,d]  = [a + c, b + d] (19) 

[a, b] - [c, d] = [a - d, b - c] (20) 

[a, b] . [c, d] = [min{ac, ad, bc, bd},  max{ab, ac, bc, bd}] (21) 

[a, b]/[c, d] = [a, b] .[1/d,  1/c] if 0J~ [c, d ] .  (22) 

These definitions are readily used to compute intervals containing the range of 
rational functions f ( y )  for y belonging to an interval Y. The simplest procedure is 
to use the natural extension form of f ( y ) .  It consists in replacing each occurrence 
of variable y by the interval Y containing it and then applying the above rules of 
interval arithmetic�9 Special procedures for bounding trigonometric and trans- 
cendental  functions allow the extension of this procedure to analytical functions�9 
The bounds so obtained are not always precise, but often better  ones can be 
obtained by various means, see Ratschek and Rokne [11] for a thorough survey 
and discussion�9 

While interval arithmetic was not initially designed for global optimization, it 
was soon understood that it could be effectively used to solve such problems�9 The 
many efforts made in that direction are summarized in the recent book of 
Ratschek and Rokne [12]. 

3.2. BOUNDING POLYNOMIAL FUNCTIONS USING INTERVAL ARITHMETIC 

When applying interval arithmetic to obtain bounds on a function f ( y )  over an 
interval Y, different results can be obtained if different expressions of the function 
are used. For the special case of a polynomial function f ( y )  = a o + aly  + a z y  2 + 

�9 �9 �9 + any n, the following forms are the most used ones: 

Natural Extension Form. As explained in the previous subsection, an inclusion 
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interval for f ( y )  can be obtained by replacing each occurrence of the variable y in 
the expression f(y) = a o + a l y  + a2y 2 + . . .  + any n by the interval Y and applying 
the rules of interval arithmetic. 

Nes ted  Form.  An inclusion interval for the function f ( y )  can also be obtained by 

writing f ( y )  in the nested form f ( y )  = ( ( " "  (any + a n 1)Y + "'" )Y + al)Y + ao, 
then replacing each occurrence of variable y in this expression by the interval Y 
and applying the rules of interval arithmetic. 

Centered Form.  An inclusion interval for the function f ( y )  can be obtained by 
writing Taylor's expansion of f (y)  at the center c of Y: f ( y )  =f(c) + f ' ( c ) ( y  - c) + 

( f " ( c ) / 2 ) ( y  - c) 2 + . . .  + ( f~n) (c ) /n ! ) (y  - c) n, then replacing each occurrence of 
y by the interval Y and applying the rules of interval arithmetic. 

R e m a i n d e r  Forms.  The idea of the remainder form (due to Cornelius and Lohner 
[2]) is to replace a part of the function f ( y )  for which an exact range is available 
by this range and then to use natural extension or some other forms to obtain a 
range for f ( y )  itself. This idea can be extended in the following two ways: (1) 
write the function f ( y )  in the form f ( y )  = (a 0 + a l y  + a2Y 2) +y3((a 3 + a4y + 

asy  2) + y3(a 6 + - - - ) . - .  ), then obtain an interval containing the range of f ( y )  by 
replacing the quadratic parts a 0 + a l y  + a2y 2, a 3 + a4y + asy  2, . . . ,  by their exact 
range, replacing all y3 by y3, and applying the rules of interval arithmetic. This 
form will be called quadratic remainder form;  (2) write the function f ( y )  in the 
form f ( y )  = (a o + a l y  + a2y  2 + a3y 3) + y4((a 4 + asy  + a6y 2 + a7Y 3) + y4(a 8 + . . .  ) 

�9 -- ), then obtain an interval containing the range of f ( y )  by replacing all cubic 
parts a 0 + a~y + azy  2 + a3y 3, a 4 + asy  + a6y 2 + a7y 3, . . . , by their exact range for 
y E Y, replacing y4 by y4 ,  and applying the rules of interval arithmetic. This form 
will be called cubic remainder form.  

4. An Interval Arithmetic Algorithm for the Global Minimization of 
Polynomial Functions 

4.1. THE CORD-SLOPE FORM OF POLYNOMIAL FUNCTIONS 

We first introduce the following cord-slope form of polynomial functions 

THEOREM 1. For any f ixed poin t  f in the interval [yL, y~], 

(~n--i ) 
\~--0 ~ i V y E [ y C ,  yV] e(y) - F(y) = (y - y) /x~+,y , (23) 

where  the coefficients t~Yi are the same as the coefficients ~i defined in (10). 

This form has been used by Alefeld [1] to compute the roots of polynomial 
functions. A straightforward proof of Theorem 1 is provided below. 
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Proof.  From the definition of/ ,~ in (10), we have 

n l ) 
(y_y)  ~ gf+,y,= y, _ a j y j - , - 1  yi(fi_y) 

i=0 i=0 j = i + l  

n j - 1  

= - E  ~ ( a j y J - i - l y i ( y - Y ) )  
j - 1  i=0 

j - 1  
= _ ~ ai ~'  ( y - i y i _  y j - i - l y i+a)  

j=1 i=0 

= _ ~ aj(Y ~ - y  J) 
j=l 

/ 

j = l  j = l  
m 

We will write 

n-1  

Fy(y) = ~ /x{+ly' (24) 
i=0 

and call 

F(y )  = F(37) + (37 - y )Fy(y)  (25) 

the cord-slope form of the polynomial F(y )  with respect to 37. The cord-slope 
form for rational functions is discussed in Section 5. Cord-slope forms for general 
univariate functions and their use in global optimization are discussed in Hansen 
et al. [8]. 

4.2. B O U N D I N G  T H E  G L O B A L  MI N IMU M ON AN INTERVAL USING INTERVAL 
A R I T H M E T I C  

Now consider the problem of obtaining bounds on the global minimum of the 
polynomial function f(y)  = a o + a ly  + a2y 2 + �9 �9 �9 + any n on an interval [yL, ye]. 
An upper bound can be easily obtained by evaluating the function value at any 
point in this interval. To obtain a lower bound, using the cord-slope form of F (y )  
with respect to yL, we have 

F(y )  = F ( y  L) + (yL _ y)FyL(y) . (26) 

Since FyL(y) is a polynomial function in y, various methods discussed in Section 3 
can be applied to obtain bounds on its range. Let Fy~ be an upper bound so 
obtained; since yL _ Y ~< 0 for y ~ [ y L  yV], we have 

U L F ( y ) ~ C ~ L ( y )  = F ( y  L) +FyL(y - -y) .  (27) 
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Let FyC~ be a lower bound of Frv(y ) also obtained by interval arithmetic 
techniques; since yV _ Y >i 0 for all y E [yC, yV], we have, 

L U F(y) >! C2v(y) = F(y v) + Fyv(y - y) . (28) 

I 2 Since CyL(y) and Cyv(y) are two underestimating linear functions of F(y), a 
lower bound of F(y) can be obtained by finding the intersection point y* of 
C~L(y ) and 2 Cy~(y), then F t min{F(yL) ,F(yV),  ~ * �9 = CyL(y )} is a valid lower bound 
on the function value. 

4.3. AN INTERVAL A R I T H M E T I C  A L G O R I T H M  TO FIND THE G L O B A L  M INIM UM  

The interval arithmetic algorithm starts from the initial interval [yL, yV]. The 
bounding techniques of the previous subsection are applied to obtain valid lower 
and upper bounds on the global minimum of F(y) on this interval. If the gap 
between those two bounds is less than a given tolerance e, the algorithm 
terminates. Otherwise, the interval is bipartitioned into two subintervals accord- 
ing to the intersection point of the two underestimating linear functions, and the 
algorithm proceeds to the next iteration. When there are more than one 
subinterval left, the subinterval for which the lower bound on the function value 
obtained is minimum is chosen to be further explored first. The procedure can be 
formally stated as follows: 

Step O. Let y0 = [yL, yV]. Evaluate F(y c) and F(y ~) and initialize Ymin =yC if 
F(Y L) < F(YV), Ymin = yV otherwise. Initialize Fmi ~ = F(ymin). Use the interval 
arithmetic techniques to find the two underestimating linear " 1 function CyL(y) and 
C~u(y) as in the previous subsection. Find the intersection point (y0, v(yO)) of 
them. If Fm~ ~ - v ( y  ~ < e, stop. Otherwise initialize a list L containing only the 
triplet (yO, yO, v(yO)). Set k = 0. 

Step 1. If L is empty, stop. Otherwise take the last triplet in L and denote it by 
(yk,  yk, v(y~)). Remove it from the list L. If Fmi n - v(y ~) <~ e, stop. Otherwise go 
to Step 2; 

Step 2. Let Yl be the left endpoint of Ye, Y2 be the right endpoint of Ye, and let 
V1 = [Yl, yk], V 2 = [yk, Y2]- For the interval V 1, find the intersection point of the 
two underestimating functions C~l(y ) and C~k(y), denote it by (yVl, v(yV,)). 

V 1 V 1 
Evaluate F(yV~), if F(yV~)<Fmin, update Ymin=Y , FminF(y ). If Fmi n - 
v(y  V~) v 1 < e, discard V~; otherwise insert the triplet (V 1, y , v(y  V')) into the list L 
so that the third member of the elements in L is in a nondecreasing order. Repeat 
the same process for V 2 = [y~, Y2] and return to Step 1. 

4.4. C O R R E S P O N D E N C E  WITH T H E  GOP A L G O R I T H M  

The procedure described in Section 4.2 is used to find a lower bound o f f ( y )  on an 
interval in the interval arithmetic algorithm. Suppose the interval under evalua- 
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tion is Y = [yL, yV]. Various forms of polynomial functions can be applied to find 
the bounds FyVL and F~v. Let us consider in detail the natural extension form: the 
function FyL(y) is written 

n - 1  

f y L ( y )  E y L i  ( 2 9 )  ---- I.Zi+ly �9 
i=1  

Since y E Y = [yL, y~], the inclusion intervals for yi are 

yi C yi 

f [ (yLf ,  (yV),] 
=/[min{(yL)i ' (yV)i}, max{(yL)i, (rU)i}] 

, 1.[0, max{(yLf, (flu)i}] 

if i is odd, 
if i is even and ~,~[yL, yU], 
if i is even and 0 E [yL, yV]. 

Therefore, using interval arithmetic 

n - 1  

FyL(Y) Z yL "~i 
= f t i + l ~  �9 

i = l  

(30) 

Then the upper bound so obtained is 

n - 1  

yL , (31) Fy vL = ~" P ' i + l Y  i 
i=1  

yL 
where y ~ is the right endpoint of y i  if/x;+ a > 0 and the left endpoint otherwise�9 

�9 1 �9 �9 1 Substituting this into the expression of C.L(y), it is clear that CyL(y)= Ll(Y ) 
L y L L L 

where Ll(y  ) is defined in (16) (since F(y ) = a o - txYl y and ix~+l = 0). Similar- 
2 ly, Cyv(y) = Lz(y),  where Lz(y ) is defined in (17). Therefore the lower bound so 

obtained is the same as the one obtained by solving the relaxed dual Problem 
RDP~yL.yV 1. Since the evaluation of the function value at yk is equivalent to 
solving the primal problem in GOP, and the framework of the interval arithmetic 
algorithm is the same as the GOP algorithm, this version of the interval arithmetic 
algorithm is equivalent to the GOP algorithm�9 (Except for the first iteration, as 
the GOP algorithm starts from a chosen starting point while the interval 
arithmetic algorithm starts by evaluating the initial interval�9 The difference is 
however minor and both algorithms can easily be modified to follow the other 
way.) 

5. Extension of the Algorithm to Rational Functions 

5.1. THE CORD-SLOPE FORM FOR RATIONAL FUNCTIONS 

Consider a rational function 

A(y)  
F ( y ) -  B(y) 
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defined on an interval [yL, yV], where A(y)  and B(y) are polynomial functions. 

Take any point 37E [yL, yU]; the cord-slope forms for A(y)  and B(y) are 

A(y)  - A(37) = (y  - y)A,y(y), B(y) - b(y) = (37 - y)By(y).  (32) 

Therefore  

A(y)  A(37) A(y)B(y- ) -  B(y)A(y)  
F(y) - F(y-) - B(y) B(37) = B(y)B(y3 

= A(y)(B(y3 - B(y)) + B(y)(A(y)  - A(y-)) 

B(y)B(37) 

- (y  - y)A(y)By(y) + (37 - y)B(y)Ay(y)  

B(y)B(37) 

B(y)Ay - A(y)By(y) 
= (37 -7 Y) B(y)B(y-) 

= ( y - y ) F y ( y )  

where Fy(y) is defined as 

B(y)A;(y)  - A(y)B,y(y) 
F;(y) - B(y)B(y-) (33) 

which is a rational function of y. The expression 

F(y) =F(37) + (37-y)Fy(y) (34) 

will be called the cord-slope form of the rational function f ly )  with respect to 37. 

5.2. AN INTERVAL ARITHMETIC ALGORITHM FOR RATIONAL FUNCTIONS 

The interval arithmetic techniques can be applied to obtain upper and lower 
bounds for the rational function Fy(y) in the cord slope form of the previous 
subsection. In particular, we can apply all the forms mentioned in Section 3 to its 
numerator  and denominator  to obtain bounds for them separately, then apply 
interval arithmetic rules to perform the division of the two inclusion intervals. AP 
alternative is to apply the mean value form to the rational function itself. In this 
form, we first write the function in Taylor's expansion at the center of the 
interval. 

F;(y) = Fy(c) + Fy( ~ )(y - c) (35) 

where ~: belongs to the interval under consideration. An inclusion interval for 
F~(y) can be obtained by replacing y by the interval containing it, Fy(~:) by an 

p 

inclusion interval for Fy(y)  and then by applying interval arithmetic rules. 
Assume that the range of the denominator  of the rational function F(y) over 
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the initial interval does not contain zero. (This assumption can be checked by 
maximizing and minimizing the denominator with the algorithm of the previous 
section; if the assumption is not satisfied, a zero of the denominator can be found 
again using interval arithmetic and the function can be simplified, unless the 
problem is not well-defined). Using the tools described in the previous paragraph 
to compute the bounds of the cord-slope F,7(y), the algorithm of the previous 
section can be immediately extended to find the global minimum of rational 
functions on an interval. A special case that may happen during the resolution is 
that the inclusion interval of the denominator of the cord-slope F~(y) may contain 
zero, in which case we can bipartition the interval at the middle point, assign - ~  
as the lower bounds on both subintervals and the algorithm continues. Because all 
the forms used here to obtain inclusion intervals have convergence order  at least 
one, i.e.,  the difference between the inclusion interval and the real range 
converges to zero as the length of the subinterval converges to zero, the inclusion 
interval of the denominator  of the cord-slope will not contain zero when the 
subinterval is sufficiently small under our assumption. Therefore  the algorithm 
converges under this assumption. 

It is worth noting that the GOP algorithm can be also applied to the 
minimization of rational functions, after the inverse of the denominator  of the 
fraction has been replaced by a new variable (Hansen and Jaumard [9]). However  
in that case, there are two complicating variables instead of one for polynomial 
functions. The algorithm becomes quite different and more complicated than the 
interval arithmetic one for minimization of rational functions. 

Of course both the GOP and the interval arithmetic algorithm apply to global 
optimization of multivariate functions. Comparison of the two methods in that 

case is beyond the scope of this paper. 

6. Computational Experience 

6.1. COMPARATIVE RESULTS FOR POLYNOMIAL FUNCTIONS 

The algorithm in Section 4 has been implemented in F O R T R A N  77 and tested on 
a SUN 3/50-12 workstation with 1.5 mips central processor. The program has 
various options depending on the form used to compute the bounds on the 
cord-slope (see Section 3). Seven test problems used by Visweswaran and Floudas 
[14] have been solved; they are recalled in Table I. The values of the tolerance 
considered are 10 -3 , 10 -7 , and 10 -12 . The number of iterations and computing 

times are listed in Tables II, III and IV respectively. 
The number  of iterations obtained by the GOP algorithm as reported in 

Visweswaran and Floudas [14] are also listed for reference (computing times are 
not available). As shown above, the GOP algorithm works in the same way as the 
interval arithmetic algorithm when natural extension form is used. For most test 
problems the number of iterations reported in Floudas and Visweswaran [14] and 
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Table I. Test  problems 

Prob lem Objective function f (x)  Initial n~ n 2 Source 
n u m b e r  interval from 

f t (Y)  . . . .  - ~ o  Y ~6y79 2 ~- Ioy71 3 ~_ y394__5225Y5 +gy~ 6 [ -2 ,111  3 1 [161 

f~(y) [1, 2] 1 i [10] 
f3(Y) = 0.000089248y - 0.0218343y 2 + 0.998266y 3 [0, 10] 2 1 [15] 

- 1.6995y 4 + 0.2y s 
f4(Y) = 4Y 2 - 4Y 3 + y4 [ - 5 ,  5] 2 2 [4] 
fs(Y) = 1.75y 2 - 1.05y 4 + ~y6 [ - 5 ,  51 3 1 [41 
f6(Y) 250 + 27y 2 - 15y 4 + y6 [ - 5 ,  5] 3 2 [7] 
f7(Y) = 10y - 1.5y 2 - 3y 3 + y4 [ - 5 ,  5] 2 1 [3] 

~ ( y ) =  - 5 0 0 . 0 y +  2 .5yZ+l .666666666y3+l .25y  4 + 1.OyS+O.833333333y6+O.714285714y 7 + 0.625y 8 
+ 0.555555555y 9 + 1.0y TM -- 43.63636363y 11 + 0.416666666y ~2 + 0.384615384y ~3 + 0.357142857y TM 

+ 0.333333333y 15 + 0.3125y 16 + 0.294117647y 17 + 0.277777777y TM + 0.263157894y 19 
+ 0.25y 2~ + 0.238095238y2~+ 0.227272727y 2z + 0.21739130@ 23 + 0.208333333y z4 + 0.2y z5 
+ 0.192307692y z6 + 0.185185185y 27 + 0.178571428y 28 + 0.344827586y 29 + 0.666666666y 3~ 
- 15.48387097y3~+ 0.15625y 32 + 0.151515151y 33 + 0.147058823y 34 + 0.142857142y 35 
+ 0.138888888y 36 + 0.135135135y 37 + 0.131578947y 38 + 0.128205128y 39 + 0.125y 4~ 
+ 0.121951219y 41 + 0.119047619y 42 + 0.116279069y 43 + 0.113636363y 44 + 0.111111111y 45 
+ 0.108695652y 46 + 0.106382978t 47 + 0.208333333y 48 + 0.408163265y 49 + 0.80y 5~ 

nl:  n u m b e r  of local minima;  n2: number  of global minima.  

Table II. Comparat ive  computat ional  results with tolerance 10 3 

Problem NEF  NF CF Q R F  CRF G O P  

N T N T N T N T N T N 

1 22 0.54 13 0.26 13 0.76 13 0.40 17 0.50 11 
2 40 8.02 36 5.18 27 58.52 37 8.42 36 6.90 34 
3 1 8  0.36 12 0.18 12 0.46 14 0.32 17 0.44 13 
4 27 0.38 18 0.26 17 0.50 26 0.52 16 0.34 30 
5 21 0.44 21 0.36 17 0.92 39 1.02 17 0.50 27 
6 37 0.86 25 0.42 23 1.26 33 0.88 37 1.02 68 
7 11 0.16 8 0.10 11 0.32 10 0.20 9 0.22 24 
Average  25.14 1.54 19.00 0.97 17.14 8.96 24.57 1.68 21.29 1.42 29.57 

NEF:  Natural  Extension Form;  NF: Nested Form; CF: Centered Form; QRF: Quadrat ic  Remainder  
Form;  CRF: Cubic Remainder  Form;  N: number  of iterations; T: computing time in seconds (on SUN 
3/50).  

Table III. Comparat ive  computat ional  results with tolerance 10 -7  

Problem NEF NF CF QRF CRF  G O P  

N T N T N T N T N T N 

1 32 0.74 21 0.38 20 1.12 20 0.58 26 0.78 19 
2 46 9.22 44 6.30 34 72.96 44 9.90 44 8.62 45 
3 27 0.50 19 0.30 18 0.78 21 0.46 25 0.62 28 
4 47 0.70 32 0.40 31 1.16 46 0.94 29 0.70 54 
5 27 0.58 21 0.34 23 1.22 41 1.06 17 0.54 34 
6 57 1.32 37 0.70 37 2.04 47 1.30 54 1.66 
7 18 0.30 16 0.22 16 0.50 17 0.34 14 0.32 216 
Average  36.29 1.91 27.14 1.23 25.57 11.40 33.71 2.08 29.86 1.89 66.00 

See legend of Table II for explanation.  
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Table IV. Comparative computational results with tolerance 10 12 

Problem NEF NF 

N T N 

CF QRF CRF GOP 

T N T N T N T N 

1 44 1.00 28 0.52 27 1.58 28 0.76 35 1.00 26 
2 59 11.96 49 7.32 43 95.06 52 11.72 52 10.60 45 
3 37 0.68 27 0.42 27 1.18 30 0.68 39 1.10 38 
4 77 1.16 48 0.60 47 1.42 73 1.58 46 1.04 62 
5 35 0.72 21 0.34 31 1.76 49 1.28 17 0.56 43 
6 87 1.96 54 0.96 53 2.92 75 2.04 73 2.06 
7 27 �9 0.38 21 0.26 26 0.78 26 0.54 24 0.52 
Average 52.29 2.55 35.43 1.49 36.29 14.96 47.57 2.66 40.86 2.41 42.80 

See legend of Table II for explanation. 

the number of iterations obtained with the natural extension form option are 

close. Differences appear to be due to the choice of initial point used (and not 

available for comparison). Exceptions are problem 6 and 7 for which Floudas and 

Visweswaran [14] report much larger numbers of iterations. Some other un- 

identified factor (perhaps numerical stability) may be at play here. 

It appears that: 
(1) For all cases, the smallest computing time is achieved by using the nested 

form. All the problems except Problem 2 are solved to within a tolerance of 10 -12 

in less than 1 second using this form; Problem 2 for which the objective function is 

of 50th order is solved in 7.34 seconds. On the average, the second smallest 

computing time is obtained by using the cubic remainder form, however the 

computing times obtained by using the natural extension form and the quadratic 
remainder form are both very close. The average computing time obtained by 

using the centered form is much larger, mainly because of the computing time 

required to solve Problem 2. 
(2) For the tolerance values of 10 -3 and 10 -7  , t h e  smallest number of 

iterations on the average is obtained by using the centered form. However for the 
tolerance of 10 -12 , it is obtained by using the nested form. Their difference is 

within 10%. The largest number of iterations is obtained by using the natural 
extension form. 

6.2. COMPARATIVE RESULTS FOR RATIONAL FUNCTIONS 

For rational functions, the cord-slope Fy(y) is also a rational function. As 

mentioned in Section 5, bounds on this cord-slope can be obtained by applying all 
the forms mentioned in Section 3 to the numerator and to the denominator 
separately and then applying interval arithmetic rules of division. An alternative is 
to use the mean-value form on this rational function directly. A set of 7 test 
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Table V. Test  problems with rational functions 

Problem Objective function f(x) Initial n 1 n 2 
n u m b e r  interval 

1 rx(y) =L(y ) / (L (y )  + 5.0) [-5,  51 1 
2 re(y) =f4(y)/f6(y) [ -5 ,  51 2 
3 r3(y ) =f6(y)/(f4(y) + 10) [ -5 ,  5] 2 
4 r4(y) =f2(Y)/(f~(Y) + 3000) [1, 21 1 
5 rs(y ) =f3(y)/f6(y) [ -5 ,  5] 3 
6 r6(y ) =fs(y)/( f7(y) + 10) [ -5 ,  5] 3 
7 r7(y ) =f3(y)/(fs(y) + 10) [ -5 ,  5] 2 

problems with rational objective functions constructed from polynomial functions 
used in the previous subsection is provided in Table V. Comparative computation- 
al results are provided in Tables VI, VII and VIII: 

It appears that: 

Table VI. Comparative computational results with tolerance 10 3 

Problem NEF  NF CF Q R F  CRF M V F  

N T N T N T N T N T N T 

1 42 2.48 13 0.76 15 1.94 28 1.82 31 2.10 17 2.28 
2 270 16.32 82 4.20 25 3.82 .153 9.18 103 6.56 101 13.50 
3 41 2.70 19 1.26 14 2.10 21 1.50 34 2.66 21 3.30 
4 49 34.38 35 22.50 26 75.58 35 24.26 40 28.08 23 32.84 
5 266 18.96 82 5.06 24 4.24 150 10.48 107 8.16 92 13.56 
6 53 3.80 25 1.56 25 3.84 25 3.88 33 2.82 28 4.40 
7 32 2.58 13 1.00 16 3.04 18 1.48 23 2.28 18 3.72 
Average  107.57 11.60 38.43 5.19 20.71 13.51 61.43 7,51 53.00 7.52 42.86 10.51 

See legend of Table II for explanation. 

Table VII. Comparative computational results with tolerance 10 v 

Problem NEF NF CF Q R F  CRF  MVF 

N T N T N T N T N T N T 

1 52 3.24 19 1.20 21 2.82 40 2.70 38 2.76 23 
2 289 17.92 88 4.64 39 6.38 169 10.56 110 7.26 117 
3 53 3.74 24 1.58 23 3.58 32 2.44 44 3.54 27 
4 60 42.08 42 26.92 31 89.80 43 29.76 46 32.28 28 
5 277 20.14 90 5.80 31 5.74 158 11.28 115 8.96 98 
6 66 4.74 32 2.02 37 5.82 41 2.94 40 3.44 42 
7 41 3.50 20 1.16 24 4.80 28 2.50 31 3.18 26 

3.36 
16.64 

4.40 
39.84 
14.86 
6.86 
5.68 

Average  119.71 13.62 45.00 6.19 29.43 16.99 73.00 8.88 60.57 8.77 51.57 13.09 

See legend of Table II for explanation. 
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Table VIII. Comparative computational results with tolerance 10 12 

Problem NEF NF CF QRF CRF MVF 

N T N T N T N T N T N T 

1 68 4.50 28 1.76 29 4.02 55 3.82 45 3.40 32 4.92 
2 313 19.91 97 5.28 52 8.78 187 12.08 119 8.08 137 20.58 
3 67 4.92 34 2.34 31 4.96 42 3.26 54 4.46 33 5.50 
4 70 48.98 49 31.34 39 112.96 52 35.88 54 37.90 38 53.94 
5 291 21.52 98 6.46 39 7.40 167 12.12 128 10.34 107 16.92 
6 83 6.08 41 2.54 55 8.82 58 4.28 48 4.18 58 9.66 
7 55 4.92 27 2.26 32 6.56 37 3.44 46 4.80 35 7.86 
Average 135.29 15.83 53.43 7.43 39.57 21.93 85.43 10.70 70.57 10.45 62.86 17.05 

See legend of Table II for explanation. 

(1) Again for all problems, the smallest computing time is obtained by using 
the nested form. The computing time obtained by using the quadratic remainder 
form and the cubic remainder form are very close, the difference being within 
3%. However, the computing time obtained by using the natural extension form is 
significantly larger This is because for two of the problems (Problem 2 and 
Problem 5), many bisections are needed to reduce the size of the interval so that 
inclusion intervals obtained by the natural extension form of the denominator do 
not contain the value zero. The centered form still requires the largest computing 
times on the average. 

(2) On average, the smallest number of iterations is achieved by using the 
centered form, the second smallest is obtained by using the nested form. Their 
difference is now between 25% and 45%. The largest number of iterations is 
obtained using the natural extension form, and is about 4 times as large as the 
smallest number of iterations obtained on the average. 
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